banner02
Structures, Functions, and Adaptations of the Human LINE-1 ORF2 Protein
Eric Baldwin  1  , Trevor Van Eeuwen  2  , David Hoyos  3  , Arthur Zalevsky  4  , Egor Tchesnokov  5  , Roberto Sanchez  1  , Bryant Miller  6  , Luciano Distefano  7  , Francesc Xavier Ruiz  8  , Matthew Hancock  9  , Esin Işik  6  , Carlos Mendez-Dorantes  6  , Thomas Walpole  10  , Charlie Nichols  10  , Paul Wan  10  , Kirsi Riento  10  , Rowan Halls-Kass  10  , Martin Augustin  11  , Alfred Lammens  11  , Anja Jestel  11  , Paula Upla  2  , Kera Xibinaku  12  , Samantha Congreve  12  , Maximiliaan Hennink  12  , Kacper Rogala  13  , Anna Schneider  14  , Jennifer Fairman  15  , Shawn Christensten  16  , Brian Desrosiers  1  , Gregory Bisacchi  1  , Oliver Saunders  1  , Nafeeza Hafeez  1  , Wenyan Miao  1  , Rosana Kapeller  1  , Dennis Zaller  1  , Andrej Sali  17  , Oliver Weichenrieder  14  , Kathleen Burns, Matthias Gotte  5  , Michael Rout  2  , Eddy Arnold  18  , Benjamin Greenbaum, Donna Romero  1  , John Lacava  2, 7  , Martin Taylor  19@  
1 : ROME Therapeutics
Boston, MA -  United States
2 : The Rockefeller University
New York, NY -  United States
3 : Memorial Sloan Kettering Cancer Center
New York, NY -  United States
4 : University of California, San Francisco
San Francisco, CA -  United States
5 : University of Alberta
Edmonton, Alberta -  Canada
6 : Dana-Farber Cancer Institute [Boston]
450 Brookline Ave.Boston, MA 02215 -  United States
7 : European Research Institute for the Biology of Ageing [Groningen]
Antonius Deusinglaan 1, 9713 AV Groningen -  Netherlands
8 : Rutgers University
Camden, Newark, New Brunswick, New Jersey -  United States
9 : University of California [San Francisco]
505 Parnassus Ave, San Francisco, CA 94143 -  United States
10 : Charles River Laboratories
Saffron Walden, Essex -  United Kingdom
11 : Proteros Biostructures
Planegg -  Germany
12 : Whitehead Institute
455 Main St, Cambridge, MA 02142, États-Unis -  United States
13 : Stanford School of Medicine
Stanford, CA -  United States
14 : Max Planck Institute for Biology, Tübingen
Tübingen -  Germany
15 : Johns Hopkins University School of Medicine [Baltimore]
Baltimore, MD -  United States
16 : University of Texas at Arlington
Arlington, TX -  United States
17 : University of California, San Francisco
San Francisco, CA -  United States
18 : Rutgers University
New Jersey -  United States
19 : Department of Pathology, Massachusetts General Hospital and Harvard Medical School
Boston, MA USA -  United States

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one third of the human genome through a “copy-and-paste” mechanism catalyzed by its multifunctional enzyme, open reading frame 2 protein (ORF2p). ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer, autoimmunity, and aging, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p ‘core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-EM in multiple conformational states. Our analyses reveal two novel folded domains, extensive contacts to RNA templates, and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry reveal that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signaling via cGAS/STING and resulting in interferon production. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which likely explains cytosolic priming. Additional biochemical activities including processivity, DNA-directed polymerization, non-templated base addition, and template switching together allow us to propose an updated L1 insertion model. Finally, our evolutionary analysis reveals structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on L1 evolutionary history, and enable rational drug development targeting L1.

(if time permits and the committee finds this of interest, unpubilshed structural and mechanistic data will also be presented)


Online user: 7 Privacy
Loading...